Stimulus-dependent BOLD and perfusion dynamics in human V1.

نویسندگان

  • R D Hoge
  • J Atkinson
  • B Gill
  • G R Crelier
  • S Marrett
  • G B Pike
چکیده

Blood oxygenation level-dependent (BOLD) fMRI signals often exhibit pronounced over- or undershoot upon changes in stimulation state. Current models postulate that this is due to the delayed onset or decay of perfusion-dependent attenuating responses such as increased cerebral blood volume or oxygen consumption, which are presumed to lag behind the rapid adjustment of blood flow rate to a new steady-state level. If this view is correct, then BOLD overshoot amplitudes in a specific tissue volume should be correlated with steady-state increases in perfusion, independent of stimulus type. To test this prediction, we simultaneously recorded BOLD and relative perfusion signals in primary visual cortex while inducing graded perfusion increases with three types of visual stimulus. Two of these, a diffuse chromatic stimulus with no luminance variation and a very high spatial frequency luminance grating, did not produce detectable BOLD overshoot (or undershoot) when an equal mean luminance baseline was used. Radial checkerboard stimuli, however, caused pronounced over/undershoot of both BOLD and perfusion signals even when temporal mean luminance was held constant and stimulus contrast was adjusted to produce the same steady-state blood flow increases evoked by the other stimuli. Transient amplitudes were relatively invariant in spite of large changes in steady-state response, demonstrating nonlinear BOLD and perfusion step responses in human V1. These findings suggest that, rather than a purely tissue-specific biomechanical or metabolic phenomenon, BOLD overshoot and undershoot represent transient features in the perfusion signal whose effects may be amplified by slowly evolving blood volume changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear temporal dynamics of the cerebral blood flow response.

The linearity of the cerebral perfusion response relative to stimulus duration is an important consideration in the characterization of the relationship between regional cerebral blood flow (CBF), cerebral metabolism, and the blood oxygenation level dependent (BOLD) signal. It is also a critical component in the design and analysis of functional neuroimaging studies. To study the linearity of t...

متن کامل

Effect of luminance contrast on BOLD fMRI response in human primary visual areas.

In this study, we examined the effect of stimulus luminance contrast on blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging within human visual cortex (V1 and extrastriate). Between experiments, the calibrated luminance of a single red LED covering 2 degrees of the subject's visual field was changed relative to a constant background luminance. This stimulus provided a...

متن کامل

Magnocellular and parvocellular visual pathways have different blood oxygen level-dependent signal time courses in human primary visual cortex.

PURPOSE The magnocellular and parvocellular pathways (M and P pathways) are the major pathways of the visual system, with distinct histologic and physiologic properties that may also have different metabolic characteristics. We hypothesize that the differences of the 2 visual pathways would also manifest as differences in the signal time course of blood oxygen level-dependent functional MR imag...

متن کامل

Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response.

Many experiments measuring blood oxygen level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) data assume that the BOLD signal is predominantly linear in space and time. Previous investigations of temporal linearity have reported that the temporal BOLD response contains both linear and nonlinear components. Here, we used a novel method to investigate spatial linearity of...

متن کامل

Independent components in stimulus-related BOLD signals and estimation of the underlying neural responses.

We measured blood oxygen level dependent (BOLD) responses to the onset of dynamic noise stimulation in defined regions of the primary retinotopic projection (V1) in visual cortex. The response waveforms showed a remarkable diversity across stimulus types, violating the basic assumption of a unitary general linear model of a uniform BOLD response function convolved with each stimulus sequence. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 9 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1999